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A two-component system of penetrable particles interacting via a gaussian core
potential is considered, which may serve as a crude model for binary polymer
solutions. The pair structure and thermodynamic properties are calculated
within the random phase approximation (RPA) and the hypernetted chain
(HNC) integral equation. The analytical RPA predictions are in semi-quantita-
tive agreement with the numerical solutions of the HNC approximation, which
itself is very accurate for gaussian core systems. A fluid-fluid phase separation is
predicted to occur for a broad range of potential parameters. The pair structure
exhibits a nontrivial clustering behaviour of the minority component. Similiar
conclusions hold for the related model of parabolic core mixtures, which is
frequently used in dissipative particle dynamics (DPD) simulations.

KEY WORDS: Gaussian core potential; phase separation; random phase
approximation.

1. INTRODUCTION

Demixing of binary or multicomponent mixtures is a very common phe-
nomenon observed in a broad range of molecular fluids, (1) polymer solu-
tions and blends, (2, 3) or colloidal dispersions. (4, 5) Phase separation is
generally associated with differences in the attractive interactions between
particles of different chemical species. In polymer solutions these differ-
ences are usually embodied in the Flory q-parameter, (2) which controls the
competition between the entropy of mixing and the total interaction
energy, at least within a mean-field picture. On the other hand, in multi-
component colloidal systems like binary dispersions involving colloidal
particles of very different sizes, or mixtures of colloidal particles and non-
adsorbing polymer, phase separation can be driven by purely repulsive,
excluded volume interactions. By mapping the initial multi-component



system onto an effective one-component system involving only the bigger
colloidal particles, the largely entropy-driven demixing can be understood
in terms of attractive depletion interactions induced between the large par-
ticles by the smaller species (the ‘‘depletant’’). (5) It should however be kept
in mind that the initial bare interactions are purely repulsive, albeit
strongly non-additive, as in the highly simplified Asakura–Oosawa model
for colloid-polymer mixtures. (6) In the case of fully additive hard sphere
mixtures, phase separation has been predicted for sufficiently large size
ratios, (7) but it is now generally believed that the fluid-fluid demixing is
metastable, and preempted by freezing. (8) A significant degree of positive
non-additivity of the core radii Rmn (whereby R12=(R11+R22)(1+D)/2,
with D > 0) is required to observe a stable demixing transition in the fluid
phase. (9)

Effective interactions between the centres of mass of fractal objects,
like linear polymer coils, (10–13) star polymers (14) or dendrimers, (15) obtained
by averaging over individual monomer degrees of freedom, are now known
to be very ‘‘soft.’’ More specifically the effective pair potential diverges
only logarithmically for overlapping star polymers, (14) while remaining
finite, of the order of 1 − 2kBT, for linear polymers in good solvent. (10–13)

This observation has stimulated the investigation of simple models, like
finite repulsive step potentials, (16) or the gaussian core potential, (17–19) which
was first introduced by Stillinger, in a somewhat different context, (20)

namely

v(r)=E exp( − r2/R2), (1)

where E is the energy scale, while R determines the range of the effective
potential. It is worth stressing that the ‘‘gaussian core’’ model is unrelated
to the ‘‘gaussian molecule’’ model, which was extensively studied by
Michael Fisher and collaborators. (21) In the latter model it is the Mayer
f-function, rather than the pair potential, which has a gaussian shape.

Simple, penetrable particle models are also widely used in highly
coarse-grained simulations of large-scale phenomena within the so-called
‘‘dissipative particle dynamics’’ (DPD) method. (22, 23) In DPD, effective
interactions between penetrable fluid ‘‘particles’’ are frequently modelled
by a simple parabolic potential: (23, 24)

v(r)=˛E(1 − r/R)2; r < R
0; r \ R.

(2)

It has recently been realized that binary mixtures of particles with pene-
trable cores, which interact via generalizations of the gaussian and parabolic
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potentials (1) and (2), involving different energy scales E and radii R for the
various species, may phase-separate over appropriate ranges of these
parameters. Spinodal instability was first shown to occur for the gaussian
core model (1) within the random phase approximation (RPA) (18) and
binodals as well as interfacial properties were then calculated within the
same approximation. (19) Similarly Gibbs ensemble Monte Carlo simulations
have very recently shown that binary systems of soft particles interacting
via the parabolic potential (2) phase separate beyond a critical degree of
enhanced repulsion between particles of different species, in agreement with
Flory-like mean field considerations.(24)

In this paper we systematically extend our earlier results for the gaus-
sian core model (18) and investigate the range of validity of the RPA by
detailed calculations of the pair structure, thermodynamics, and the result-
ing phase coexistence curve within the much more accurate hypernetted
chain (HNC) approximation. The break-down of the RPA is quantified in
the physically relevant regime where rR3 4 1 and E 4 kBT, which would
correspond to the cross-over from dilute to semi-dilute regimes of the
underlying binary polymer solution. The RPA continues to provide reliable
first estimates at higher densities.

2. RPA AND HNC

The model under consideration is the binary gaussian core model
(GCM) already introduced in refs. 18 and 19. It consists of N1 particles of
‘‘radius’’ R1 and N2 particles of ‘‘radius’’ R2 in a volume V. The total
number density is r=(N1+N2)/V, while the concentrations of the two
species are x=N2/N and 1 − x=N1/N, respectively. The pair potentials
are

vmn(r)=Emne−(r/Rmn)2
, (3)

which introduce three length and three energy parameters: R11, R22,
R12, E11, E12 and E22. If R11 is chosen as unit of length, the system is entirely
specified by the 5 dimensionless parameters R12/R11, R22/R11, Eg

11=bE11,
Eg

12=bE12, Eg
22=bE22, where b=1/(kBT). For a fixed set of dimensionless

parameters the reduced Helmholtz free energy per particle, f=F/(NkBT),
is a function only of the intensive variables r and x; this may be split into
the ideal gas, ideal mixing and excess (non-ideal) contributions:

f(r, x)=fid(r)+fmix(x)+fex(r, x) (4a)

=ln(rL3) − 1+x ln x+(1 − x) ln(1 − x)+fex(x, r), (4b)

Phase Separation of Penetrable Core Mixtures 1017



where L is an irrelevant de Broglie thermal wavelength. The equation of
state bP/r, and the chemical potentials mn, (n=1, 2) follow from the
standard thermodynamic relations:

bP
r

=r 1“f
“r

2
x

(5a)

bm1=1“rf
“r

2
x

− x 1“f
“x

2
r

(5b)

bm2=1“rf
“r

2
x
+(1 − x) 1“f

“x
2

r

(5c)

and may likewise be split into ideal and excess contributions. Within RPA
and HNC, these excess contributions may be easily expressed in terms of
the usual total and direct correlation functions hmn(r) and cmn(r), which are
related by the familiar Ornstein–Zernike (OZ) relations; (25) these may be
used to express the Fourier transforms (FT) ĥmn(k) of the total correlation
functions in terms of the FT ĉmn(k) of the direct correlation functions:

ĥ11(k)=
1

D(k)
[ĉ11(k)(1 − r2 ĉ22(k))+r2 ĉ2

12(k)], (6a)

ĥ12(k)=
1

D(k)
ĉ12(k), (6b)

ĥ22(k)=
1

D(k)
[ĉ22(k)(1 − r1 ĉ11(k))+r1 ĉ2

12(k)], (6c)

where r1=r(1 − x), r2=rx, and

D(k)=[1 − r1 ĉ11(k)][1 − r2 ĉ22(k)] − r1r2 ĉ2
12(k). (7)

These OZ relations must be supplemented by closure relations.
The RPA amounts to simply identifying the cmn(r) with their asympto-

tic (large r) behaviour:

cmn(r)=−bvmn(r)

=−Eg
mne

−(r/Rmn)2
(8)

Substitution of the FT’s of (8) into the relations (6) and (7) yields explicit
expressions for the ĥmn(k), which may be transformed back to obtain the
hmn(r). Detailed analytical expressions are given in Appendix A in the
special case of mixtures with equal core radii R11=R22=R12=R.
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The HNC closure relations are: (25)

gmn(r)=1+hmn(r)

=exp{ − bvmn(r)+cmn(r)} (9a)

cmn(r)=hmn(r) − cmn(r) (9b)

An iterative procedure must be used to solve the coupled Eqs. (6) and (9)
numerically. Convergence is easily achieved for the binary GCM model
over most of the potential parameter space. In fact the HNC approxima-
tion becomes exact in the high density limit (rR3

Q .), and is extremely
accurate for densities rR3 % 1, as shown earlier in the one-component
case. (17, 18) Pair structure data will be examined in greater detail in Section 5.

Knowledge of the pair correlation functions allows direct access to
thermodynamics, via the compressibility or virial routes. (25) Being approx-
imate, the RPA and HNC closures are not thermodynamically consistent,
i.e., the two routes lead to different answers. In the case of the GCM the
two theories become strictly thermodynamically consistent only in the high
density limit. (17, 18)

Within the RPA, the compressibility route is equivalent to a simple
mean-field ansatz for the free energy. (17, 18) This leads immediately to the
following analytic expression for the excess part of the reduced free
energy: (18)

fC
ex(x, r)=1

2 rV0(x) (10a)

=1
2 r C

n

C
m

xmxnVmn (10b)

Vmn=bv̂mn(k=0)=F bvmn(r) dr, (10c)

where x1=(1 − x), x2=x. In the special case of the GCM:

Vmn=p3/2Eg
mnR

3
mn (11)

The pressure and chemical potentials mn follow directly from Eqs. (5)
(the superscript C refers to the compressibility route):

bPC

r
=1+

r

2
C
m

C
n

xmxnVmn (12a)

bmC
1 =ln(rL3(1 − x))+V11r(1 − x)+V12rx (12b)

bmC
2 =ln(rL3x)+V12r(1 − x)+V22rx (12c)
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The virial route is considerably more arduous. The pressure follows from
the virial theorem:

bPV

r
=1+

r

2
C
m

C
n

xmxnVmn

−
2p

3
r C

m

C
n

xmxn F
.

0
r3 dbvmn(r)

dr
hmn(r) dr (13)

In the case of the symmetric mixture (R11=R22=R12=R; V11=V22) the
RPA pair correlation functions obtained in Appendix A may be used to
yield the following expression (the superscript V referring to the virial
route):

bPV

r
=

bPC

r
−

z2x(1 − x) D

p3/2R3 t 1 −
r

z1

2

−
z1x(1 − x) D

p3/2R3 t 1 −
r

z2

2 , (14)

where the functions t(s) and the roots z1 and z2 are defined in Appendix A
(Eqs. (A4a) and (A4b)). The resulting reduced free energy per particle is
obtained by integrating the equation of state (14) with respect to density:

fV(x, r)=fC(x, r)+
1

2p3/2rR3 [Li5/2 (r/z1)+Li5/2 (r/z2)+rV11], (15)

where the polylogarithm Li5/2 is defined in equation (A7). Unfortunately
this expression becomes singular for densities larger than the spinodal den-
sities obtained by the compressibility route. This mathematical artifact
discussed in Appendix A does not allow us to use expressions (14) and (15)
to construct a phase diagram.

The lack of thermodynamic consistency of the RPA is illustrated in
Fig. 1, which compares the compressibility and virial equations of state as a
function of density, for a symmetric mixture; the virial pressures are always
lower than their compressibility counterparts, and closer to the nearly exact
HNC results, to which we now turn.

The HNC approximation is very nearly thermodynamically consistent
in practice, at least for temperatures and densities relevant for polymer
solutions. (18) Hence we have calculated thermodynamic properties within
the more convenient virial route with the pressure given by the standard
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Fig. 1. The normalised effective second virial coefficient B̃2=4(bP − r)/(3r2V11) is plotted
versus the normalized density rg/2 at fixed concentration x=0.5 for RPA-C, RPA-V and
HNC. In the upper plot, we have Eg

11=Eg
22=0.1, Eg

12=0.2, while in the lower plot
Eg

11=Eg
22=1.0, Eg

12=2.0. Both systems have the reduced critical density rg
c =2 in RPA-C. The

RPA-C route predicts B̃2=1 at all densities (solid line). The RPA-V values are represented by
the dotted lines, the HNC data by the dashed lines up to the density beyond which conver-
gence fails. The agreement between the three routes to the equation of state is seen to improve
with increasing density, except in the vincinity of the critical density where the results diverge
again.

relation (13), while the chemical potentials may also be directly expressed
in terms of the direct and total correlation functions, according to: (26)

bmn=ln(rnL
3)+C

m

3rm

2
F dr hnm(r)[hnm(r) − cnm(r)] − rm ĉnm(k=0)4 . (16)

Note that these expressions hold only within the HNC approximation, and
are consistent with the virial route (13).

3. SCALING PROPERTIES

As mentioned earlier, suitably reduced equilibrium properties of the
binary GCM depend on the five dimensionless combinations R12/R11,
R22/R11, Eg

11, Eg
12, and Eg

22. The compressibility version of the RPA thermo-
dynamics (or equivalently, the mean field approximation) allows a consid-
erable reduction of this parameter space. From the expressions (10)–(12c) it
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is clear that the radii Rmn and energies Emn enter only in the combinations Vmn

defined in Eq. (11). In terms of the reduced density rg=rV11 and pressure
Pg=bPV11, the thermodynamic behaviour of the mixture is uniquely
determined by the dimensionless ratios V22/V11 and V12/`V11V22. This
remarkable reduction of parameter space holds only for the thermody-
namics, but not for the correlation functions, which depend explicitly on
the five parameters of the GCM potentials. The scale invariance of the
thermodynamics is broken by the RPA virial route, as is immediately
evident form the explicit expressions (14) and (15) (valid for a symmetric
mixture); the same is true within the HNC approximation.

However deviations from RPA-C (mean-field) scale invariance are
expected to be small in the high density, high temperature regime, where
RPA is increasingly accurate, so that the considerable reduction in the
number of relevant potential parameters (from 5 to 2) is expected to carry
over, at least approximately, to the phase diagrams calculated with RPA-V
or HNC thermodynamics, which will be presented in the next section.

4. PHASE DIAGRAMS

The phase behaviour of the binary GCM may be deduced from the
knowledge of the reduced free energy per particle f as a function of the
variables v=1/r and x and from its thermodynamic derivatives (the pres-
sure and the chemical potentials). For suitable values of the potential
parameters Emn and Rmn, the binary GCM becomes unstable against demix-
ing at sufficiently high densities. In terms of the free energy per particle,
f=f(v, x), the standard thermodynamic stability conditions of a binary
mixture read: (1)

1“
2f

“v2
2

x
> 0; 1“

2f
“x2

2
v

> 0 (17a)

1“
2f

“v2
2

x

1“
2f

“x2
2

v
−1 “

2f
“v“x

22

> 0. (17b)

The first condition ensures mechanical stability, while the second inequality
guarantees stability against demixing at constant volume; the third
inequality ensures stability of the mixture at constant pressure. Note that
the stability at constant pressure is the more restrictive condition.

The subsequent discussion is restricted to demixing at constant pres-
sure. The vanishing of the l.h.s. of Eq. (17b), corresponding to the case
where the third inequality turns into an equality, signals the occurrence of
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spinodal instability. Within the mean-field (RPA-C) approximation (10),
the equation for the spinodal is easily calculated to be (18)

1+rV1(x) − r2x(1 − x) DV=0, (18)

where:

V1(x)=(1 − x) V11+xV22 (19a)

DV=V2
12 − V11V22. (19b)

It is easily inferred from (18) that a spinodal instability occurs whenever
V12/`V11V22 > 1. This region is visualized in Fig. 2 in a plot of the
minimum energy ratio E12/`E11E22 required for spinodal instability, as a
function of the size ratio R22/R11. The radius R12 is taken to be given by
the combination rule:

R2
12=1

2 (R2
11+R2

22), (20)

as suggested by renormalization group (RG) calculations (11) and by direct
simulation (12) of mixtures of self-avoiding polymer coils.
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√ ε 
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 22

Demixing in RPA

No demixing

Fig. 2. Mixing/demixing regions within RPA-C, in the E12/`E11E22 vs. R22/R11 plane.
Above the solid line phase separation is predicted by RPA-C. Corresponding values of
E12/`E11E22 predicted for polymers with radii of gyration R11 and R22 by a renormalisation
group theory of Krüger et al. (11) are plotted as the dashed curve. The intersection of these
curves at R22/R11 % 10 suggests the possibility of a phase separation in polymer mixtures with
extreme size ratios.
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Figure 2 also shows the values of the ratio E12/`E11E22, as calculated
for two self-avoiding walk polymers by RG techniques, (11) plotted as a
function of the ratio of their radii of gyration. The figure suggests that
phase separation of real polymers would only be observed for ratios of
gyration radii larger than 10, i.e., for mixtures of very long and very short
polymers. However, the RG results are probably not trustworthy for such
asymmetric mixtures, and the RG potentials are strictly valid only in the
infinite dilution limit.

The spinodal line in the P−x-plane is easily calculated from (18) to be:

rS(x)=
V1(x)+`[V1(x)]2+4x(1 − x) DV

2x(1 − x) DV
(21)

The critical concentration is determined by the condition:

dPS(x)
dx

=0, (22)

where PS(x) is the pressure calculated from (12a), at the spinodal density
given by (21). The corresponding critical density rC, calculated by substi-
tuting the critical concentration determined by (22) is plotted in Fig. 3
versus the ratio V12/`V11V22, for several ratios V22/V11.
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Fig. 3. Reduced critical densities rcV11 vs. V12/`V11V22, for several values of V22/V11 from
RPA-C (shown in the inset).
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The binodal or phase coexistence curves in the r − x plane are deter-
mined by the usual conditions of equality of the chemical potentials of both
species and of the pressures in the two phases, using expressions
(12a)–(12c). The resulting equations must in general be solved numerically
to yield the binodal curves. The complete phase diagram can however be
calculated analytically within the RPA-C approximation, in the symmetric
case, where V11=V22. Due to the symmetry of the problem, all thermody-
namic quantities must be invariant with respect to the transformation
1 Y 2; x Y (1 − x) and r Y r. This simplification allows the fully analytic
treatment detailed in Appendix B. The resulting spinodal and binodal are
shown in Fig. 4 in the case where V12/V11=2. The same figure also shows
the HNC binodals, for several values of Eg

11 (remember that within RPA-C
all these binodals coincide). As expected the HNC results break the scale
invariance of RPA-C and shift the binodal curves upward, to higher den-
sities. The HNC and RPA-C critical densities differ by almost a factor of
2 for Eg

11=2, pointing to the limitations of the mean-field (RPA-C)
description.

An example of a phase diagram in an asymmetric mixture, with
potential parameters already used in earlier RPA calculations, (18, 19) is
shown in Fig. 5 in the r − x plane and in Fig. 6 in the P − x plane. The
spinodal and binodal curves are now asymmetric, and the difference

0 0.2 0.4 0.6 0.8 1
x
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2

4

6

ρ 
  V

11

RPA binodal
RPA spinodal

HNC ε∗ 11 = 0.1

HNC  11 = 0.2

HNC  11 = 0.5

HNC  11 = 1.0

HNC  11 = 2.0

ε∗ 

ε∗ 

ε∗ 

ε∗ 

Fig. 4. Binodal for a symmetric GCM mixture with V12/V22=2 for values of Eg
11=Eg

22=
0.2, 0.5, 1.0, 2.0, determined by RPA-C (full curves) and HNC (dashed curve). The RPA-C
binodal and spinodal (dotted line) depend only on the ratio V12/V11. The HNC binodal does
not obey the same scale invariance and is shifted to higher reduced density as E11 increases.
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Fig. 5. Phase diagram in r-x plane for asymmetric mixture with R11=1, R12=0.665,
R22=0.849, Eg

11=Eg
22=2, Eg

12=1.888. The solid curve is the RPA-C binodal with examples of
tie-lines of coexisting phases as dash-dotted lines. The dotted line is the RPA spinodal. The
circles and dashed curve represent the HNC binodal with tie-lines shown again as dash-dotted
lines.
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Fig. 6. Phase diagram in P-x plane for asymmetric mixture with R11=1, R12=0.665 and
R22=0.849, Eg

11=Eg
22=2, Eg

12=1.888. Symbols as in Fig. 5. The tie-lines in this plot (not
shown) are horizontal.
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between RPA-C and HNC results is again significant, with the HNC
binodal being pushed to higher densities.

Phase separation in binary mixtures of particles interacting via the
closely related parabolic core potentials (2) has been observed in the Gibbs
ensemble Monte Carlo simulations of Wijmans et al. (24) They considered the
symmetric case where all Rmn are equal, Eg

11=Eg
22 and Eg

12=Eg
11+DEg. We

have calculated the binodal in the DEg −x plane under the same conditions
as the MC simulations, i.e., for Eg

11=12.5, rg
b =rbR3=3, in the RPA and

HNC approximations. The results are compared to the MC data in Fig. 7.
In view of the fact that the amplitude of the parabolic repulsion is 12.5kBT,
which makes it more hard-core like, the agreement may be considered to be
rather satisfactory. As in the GCM case, the HNC coexistence-curve lies well
above its RPA counterpart; it is closer to the simulation data.

5. PAIR STRUCTURE AND CLUSTERING

The pair correlation functions hmn(r) of the GCM mixture can be cal-
culated by combining the OZ relations (6) with either the RPA closure (8)

0 0.2 0.4 0.6 0.8 1
x

0

2

4

6

∆ε
∗

Fig. 7. Binodal of the parabolic core system (2) investigated by Wijmans et al. (24) Here
Eg

11=Eg
22=12.5 is kept fixed and Eg

12 is determined so that the binodal density has the fixed
value rbR3=3.0 at any given concentration x. The required difference DEg=Eg

12 − Eg
11 is

plotted vs. x. Note that in ref. 24 twice that value is plotted due to a different definition of the
potential parameters. The diamonds correspond to the simulation data of Wijmans et al., (24)

the solid line represents the RPA-C prediction. The HNC results are plotted as circles. While
RPA-C underestimates the required Eg

12 for the given binodal density by a factor of two, the
HNC results lie closer to the simulation data, although a significant discrepancy remains. This
may be due to the high amplitude Eg

12 of the potentials, making the particles more hard-sphere
like.
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or the HNC closure (9). In the symmetric case, characterized by a single
gaussian range parameter R11=R22=R12=R, analytic expressions, in the
form of infinite series, can be obtained for the RPA closure, as shown in
Appendix A. In the asymmetric case, solutions for the hmn(r) are readily
obtained by numerical Fourier transformation of Eq. (6) and (7), using the
straightforward Fourier transforms of the cmn(r) given by (8).

The HNC closure requires an iterative solution of the coupled OZ and
closure equations. This was achieved using the standard Picard method,
and well-converged solutions were generally obtained in a few iterations.
Convergence was found to be slower in the vicinity of phase coexistence,
and to break down rapidly inside the phase coexistence region correspond-
ing to metastable mixtures. Concentration fluctuations build up in that
region, as signalled by a k=0 peak of growing amplitude in the ĥmn(k), or
equivalently in the corresponding partial structure factors

Smn(k)=xmdmn+xmxnrĥmn(k) (23)

The concentration-concentration structure factor:

SCC(k)=x2
2S11(k) − 2x1x2S12(k)+x2

1S22(k) (24)

satisfies the long wavelength limit: (25)

lim
k Q 0

SCC(k)=
NkBT

(“
2G/“x2)N, P, T

, (25)

where G is the Gibbs free energy. The cross-over from metastable to
unstable mixture corresponds to the vanishing of (“

2G/“x2)N, P, T, so that
SCC(k=0) is expected to diverge along a spinodal line.

This is indeed the case with the RPA closure, but the HNC closure
ceases to converge before a spinodal line is reached, a well-known short-
coming of the HNC closure. (27) Such a break-down is typical of the ina-
dequacy of fluid integral equations to describe critical behaviour. (28) The
accuracy of HNC in the stable one-phase region for the pair correlation
function h(r), already documented in the one-component GCM, (17, 18) is
tested under more severe conditions (namely Eg=12.5) in Fig. 8 against
recent Monte Carlo data (24) for the parabolic core potential (2). The
agreement is seen to be excellent. This suggests that the HNC closure
would be very useful to generate pair structure in coarse-grained DPD
fluids at a moderate computational cost.

Examples of pair correlation functions and partial structure factors for
several states of GCM mixtures are shown in Figs. 9–11. The most striking
feature is the amount of structure observed both in r and in k-space, even
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g12(r Q 0) is very near zero, in contrast to the case of the much softer potentials studied in
ref. 18 and the subsequent figures.
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within the RPA, compared to the previously studied one-component
case. (18) The peak in the structure factors at k=0 as the spinodal is
approached is expected, as explained earlier. More surprising perhaps is the
appearance of peaks in the pair correlation functions as r Q 0, or at finite r.
Peaks at r Q 0 are of course precluded in the presence of hard cores, but
are quite significant in the present penetrable core model and point to a
novel physical mechanism to trigger phase separation, namely the cluster-
ing of the minority species, as observed, e.g., in Fig. 11 for the symmetric
case. The clustering can be explained by a simple ‘‘energetic’’ argument: the
particles of the majority species tend to maximise their mutual distances. If
the repulsion between unlike particles is stronger than between like ones,
particles of the minority species prefer to cluster in the voids left by the
majority species, rather than overlap with particles of the latter. This
mechanism drives phase separation.

6. CONCLUSION

The two-component extension of the gaussian core model leads to non-
trivial phase behaviour, which we have investigated within RPA and HNC
theories. The former is partially analytic, while the latter requires only a
modest numerical effort to calculate partial pair correlation functions and
the resulting thermodynamic properties. While the pair structure shows
some unexpected features, the most interesting prediction is the occurrence
of phase separation induced by purely repulsive pair interactions. As
expected for this model of penetrable particles, phase separation is driven
by an enhanced repulsion between unlike particles compared to the like-
particle interaction.

A special feature of the GCM mixtures is that at high densities of both
species, the mixture behaves like a ‘‘mean field fluid,’’ i.e., the RPA
becomes asymptotically exact. (17, 18) This means that at finite densities, the
RPA makes semi-quantitavely valid predictions for the phase behaviour,
and allows a rapid exploration of potential parameter space to search for
likely conditions for phase separation.

The nature of the link between the behaviour of the binary GCM and
that of a binary polymer solution must still be worked out in detail, mainly
because the effective interactions between the centres of mass of the
polymer coils are state-dependent. (13) For a one-component system at lower
densities, the structure is not very sensitive to the state-dependence. (29, 30)

We therefore expect the binary GCM to make qualitatively correct predic-
tions for the structure of binary polymer solutions in the dilute and
beginning of the semi-dilute regimes. The link to the phase-behaviour is less
clear. Because the GCM uses a fixed potential, it is mainly relevant to
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behaviour in the dilute regime. While polymers in a melt are known to
phase-separate rather easily, (2) in the dilute regime for good solvents they
are not expected to phase-separate. (3) This appears to be confirmed by the
results shown in Fig. 2. However, it may be that for poorer solvent, or for
stronger polymer incompatibilities, a regime where the polymers phase-
separate at low densities could open up. If this is the case, then the binary
GCM would be a useful coarse-grained model with which one could
rapidly explore the qualitative phase behaviour of this regime.

Another open question relates to the critical behaviour of the binary
GCM in the immediate vicinity of the critical consolute point. The RPA
clearly predicts mean field exponents. As regards the exact exponents, it is
not obvious whether the correct critical behaviour of the model necessarily
belongs to the Ising universality class, since there is no clear correspon-
dence between GCM mixtures and standard lattice models, due to the
penetrability of the particles. The question of the correct universality class,
a subject dear to the heart of Michael Fisher, must be considered as open.

APPENDIX A: SOLUTION OF THE VIRIAL ROUTE IN RPA

We consider the GCM where the potentials have equal range
R11=R12=R22=R, and the heights of the repulsion potentials of like
particles are the same for both species E11=E22. Without loss of generality
we can set V11=1. Then we have

ĉmn(k)=−Vmne−k2R2/4, (A1)

with

Vmn=Eg
mnR

3. (A2)

If we introduce the abbreviation ẑ(k) — rV11e−k2R2/4 and set DV=
V2

12 − V2
11=V2

12 − 1, the OZ Eq. (6) reduce to (using Eq. (7)):

rĥ11(k)=
x2 DVẑ(k)2 − ẑ(k)

D(k)
(A3a)

rĥ12(k)=−
V12 ẑ(k)

D(k)
(A3b)

rĥ22(k)=
x1DVẑ(k)2 − ẑ(k)

D(k)
(A3c)

D(k)=1+ẑ(k) − x(1 − x) DVẑ(k)2 (A3d)

1032 Finken et al.



The denominator D(k) in Eq. (6) has the zeros

z1=
1+`1+4x(1 − x) DV

2x(1 − x) DV
> 0 (A4a)

z2=
1 − `1+4x(1 − x) DV

2x(1 − x) DV
< 0 (A4b)

The positive root z1 is the spinodal density at any given composition.
The virial Eq. (13) gives

bPV

r
−

bPC

r
=−

2p

3
r C

m

C
n

xmxn F
.

0
r3 dbvmn(r)

dr
hmn(r) dr (A5a)

=
1
3

r C
m

C
n

xmxn F dr Emn(r2/R2) e−r2/R2
hmn(r). (A5b)

Evaluating this integral in Fourier space and making use of the Parseval
theorem leads to

bPV

r
−

bPC

r
=

1
3

r C
m

C
n

xmxn F dk Vmn
53

2
−

k2R2

4
6 e−r2/R2

ĥmn(k)

=
1
12

F dk
ẑ(k)2

D(k)
[x1x2 ẑ(k) DV − 2x1x2DV − 1][6 − k2R2] (A6)

This integral cannot be evaluated analytically in general. However, if the
density is below the spinodal density for a given composition, one can
expand the denominator in the integrand in a power series with respect to
ẑ(k). The integral can then be evaluated term by term, interchanging the
integration and the summation. In order to make the symmetry between
the two species explicit, we write x=1+t

2 . The shifted concentration t now
varies between − 1 and 1, with t=0 corresponding to x=0.5.

With the definition of the polylogarithmic function

Lia (x)= C
.

n=1

xn

na
, (A7)

and the auxiliary function

t(a)=
1

2a
[Li3/2 (−a) − Li5/2 (−a)] (A8)

Phase Separation of Penetrable Core Mixtures 1033



evaluation of (A6) leads to

bP
r

=1+
1
4

r[1+V12 − t2 DV]

−
z2(1 − t2) DV

4p3/2R3 t 1 −
r

z1

2

−
z1(1 − t2) DV

4p3/2R3 t 1 −
r

z2

2 . (A9)

This can be integrated to give the free energy per particle

bf(x, r)=f id+fmix(x)

+
1
4

r[1+V12 − t2DV]

+
1

2p3/2rR3 [Li5/2 (r/z1)+Li5/2 (r/z2)+r] (A10)

From that we get the chemical potentials as

bm1=log(L3r)+log 11 − t

2
2+

1 − t

2
r+V12

1+t

2
r+

1
2p3/2R3

+
1

2p3/2R3(1 − t) r
Li3/2

1 r

z1

251+
t

`1+DV(1 − t2)
6

+
1

2p3/2R3(1 − t) r
Li3/2

1 r

z2

251 −
t

`1+DV(1 − t2)
6 , (A11)

bm2=log(L3r)+log 11+t

2
2+

1+t

2
r+V12

1 − t

2
r+

1
2p3/2R3

+
1

2p3/2R3(1+t) r
Li3/2

1 r

z1

251 −
t

`1+DV(1 − t2)
6

+
1

2p3/2R3(1+t) r
Li3/2

1 r

z2

251+
t

`1+DV(1 − t2)
6 . (A12)

It is easily checked that m1(t, r)=m2(−t, r), due to the symmetry of the
model. Note that these expressions become singular when r \ z1 — rs. This
is a mathematical artefact originating in the interchange of summation and
integration in (A6), which renders the expressions for P and m unusable for
binodal calculations.
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APPENDIX B: ANALYTIC SOLUTION OF THE RPA-C BINODAL IN

THE SYMMETRIC CASE

The phase diagram simplifies considerably in the symmetric case where
V11=V22. We express V12 as V12=V11(1+c) and note that demixing occurs
when the dimensionless parameter c is positive. As above we introduce the
reduced quantities rg=rV11 and Pg=bPV11. Because of the symmetry of
the problem, all quantities must be invariant with respect to the transfor-
mation r Q r, x Q 1 − x, 1 Y 2, which corresponds to a relabeling of
species 1 and 2. As in Appendix A, we make use of the shifted concentra-
tion t to make this symmetry explicit. The pressure and the chemical
potentials can now be expressed in terms of the variables rg and t:

Pg=rg+
1
4

rg2(2+c) −
1
4

rg2ct2 (B1a)

bm1=ln(rg)+ln 11 − t

2
2+

1
2

rg(2+c)+
1
2

rgtc (B1b)

bm2=ln(rg)+ln 11+t

2
2+

1
2

rg(2+c) −
1
2

rgtc (B1c)

In these equations we have set L=V11, which merely shifts the free energy
per particle by a constant amount and thus does not change the phase
diagram.

Two coexisting phases a, b must have the same pressure and chemical
potentials, respectively:

Pa=Pb, ma
1=mb

1 , ma
2=mb

2 (B2)

Because of the symmetry in this model, coexisting phases must have the
same density ra=rb and the corresponding concentrations must fulfill
xa=1 − xb. Considering this, equal pressure in both phases is trivially ful-
filled, and the two conditions of equal chemical potentials become equiva-
lent. The relation between the binodal density rb and concentration is

rg
b=

1
ct

ln 11+t

1 − t
2 . (B3)

Expanding the binodal densities around the critical point gives

rg
b=

2
c
51+

1
3

t2+O(t4)6 . (B4)
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From the series expansions we see that for all c > 0 the spinodal lies inside
the binodal. Within the RPA approximation we thus get an analytically
exact solution for a fluid-fluid demixing transition of a liquid consisting of
purely repulsive particles. As expected in this treatment, the resulting criti-
cal exponents are mean-field exponents.
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